

O58900 Bentonite

CAS No.: 1302-78-9 EINECS: 215-108-5

Bentonite is an absorbent aluminium phyllosilicate generally impure clay consisting of montmorillonite. It expands when wet, absorbing 5 to 6 of its dry mass in water.

Bentonite is a useful adsorbent of ions in solution as well as fats and oils. The absorbent clay was given the name bentonite by an American geologist – after the Benton Formation (a geological stratum, at one time Fort Benton) in Montana's Rock Creek area.

Application:

- Used to decolorize mineral, animal and vegetable oils, fats and waxes.
- Used to increase the resistance of emulsions, and for stretching soaps (soaps containing bentonite are especially suitable for oily dirt).
- Used as filling agent and heat isolator, to improve some rheological or sealing performance in geoenvironmental applications.
- Used in purifying waste oil (bentonite absorbs tarry impurities).
- Used in the manufacture of tooth paste and dry-cell batteries.
- Used to thicken water colors.
- Used as binding agent for synthetics and in the steelmaking industry.
- Used for the manufacture of ceramic products.

Percentage when used as thickening agent in oil colors: 1-5 % Bentonite

Physical Properties

Color / Form	Beige-grey / powder
Sieve residue, 63 μ	10 - 40 %
Bulk density	ca. 750 kg/m ³
Humidity content	max. 14 %
Methylene blue absorption	$290 \pm 40 \text{ mg/g}$
Enslin-Neff	min. 250 %
Degree of swelling	min. 6 ml / 2g
pH Value	8.5 ± 1
Sieve residue (63 μm, dry)	10 – 40 %

Mineral Composition

Main mineral: Montmorillonite
Secondary minerals: Quartz: ca. 5 – 9 %

Mica: ca. 1-6%Feldspar: ca. 1-4%

Chemical Analysis

SiO ₂	53 – 60 %
Al_2O_3	16 – 20 %
TiO ₂	0.3 – 0.4 %
Fe ₂ O ₃	4 – 7 %
MgO	3.5 – 4.5 %
CaO	1.5 – 4.0 %
Na ₂ O	0.3 – 1.8 %
K ₂ O	1.0 - 2.2
MnO_2	0.14 %
Loss on ignition (1000°C)	8 – 13 %
Fluoride	0.09 %